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A modified marker-and-cell method is developed in order to simulate nonlinear wave mak- 
ing in the near-field of ships of arbitrary three-dimensional (3D) configuration advancing 
steadily in deep water. The 3D Navier-Stokes equations are solved by a finite difference 
scheme under proper boundary conditions. Efforts are particularly focused on the treatment of 
the boundary conditions on the body surface and free surface which have complicated 3D 
conligurations. An orthogonal cell system with more than 70,000 cells is used for the com- 
putation of the waves and flow held of ships. The agreement of computational results with 
experiment is good, and it promises effectiveness for engineering purposes. a> 1985 Academic 

Press, Inc. 
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I. INTRODUCTION 

Water waves have a dispersive or dissipative property. Concerning classical 
gravitational waves on the water surface, dispersion is very important if the water is 
deep enough. The waves of a ship on a steady straight course were considered as a 

typical example of a linear dispersive wave, which is called Kelvin’s wave system. 
This is why linear potential theories with linearized free surface condition were 
applied to the ship wave problem. However, the linear theories still do not succeed 
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in explaining the ship wave system or estimating the ship wave resistance. The dis- 
crepancy is not only quantitative but also qualitative sometimes. 

Recently it was experimentally clarified that the inadequacy of linear wave-mak- 
ing theories is due to the nonlinear features of waves generated by ships. Ships 
advancing steadily in deep water generate steep nonlinear waves called free surface 
shock waves (FSSW) in the near field of ships; consequently, the breaking of waves 
and energy-deficient phenomena take place on the wave front (see [l-3]). 
Therefore, the energy of nonlinear waves in the near field of ships is partly dis- 
sipated into momentum loss far behind, partly spread to the far field by dispersion. 
The latter constitutes Kelvin’s wave system. Ship waves have both dissipative and 
dispersive properties. 

A number of wave-making resistance theories have been developed, but they all 
are based on various linearizations of the problem. A very few of them fulfills the 
exact nonlinear free surface condition. Since the characteristics of the nonlinear ship 
waves indicate the importance of the nonlinear free surface condition, a new non- 
linear theoretical solution method needs to be developed. The most powerful and 
flexible method is supposed to be a finite difference method which is suitable for 
nonlinear problems with free surface. One of the most famous methods is the MAC 
method by Welch et al. [4], and some improved versions have been developed by, 
for example, Chan and Street [S], Viecelli [6], and Nichols and Hirt [7]. This 
kind of method is a solution procedure for Navier-Stokes equations and the 
equation of continuity. When exact boundary conditions are properly treated, the 
generation of nonlinear steep waves can be explained by this kind of procedure, 
although subsequent energy-deficient phenomena of wave breaking and free surface 
turbulence cannot be taken into consideration. 

The authors and colleagues have developed a modified version of the MAC 
method called the TUMMAC method (Tokyo University modified marker-and-cell 
method) by particularly modifying the body boundary condition and the free sur- 
face condition to suit to the ship wave problem. These two boundaries occur where 
nonlinear fluid phenomena are initiated. The versions TUMMAC-I (see [S-lo]) 
and TUMMAC-II (see [ll, 121) were already developed for waves from a wedge 
model and from the fore-part of a hull with arbitrary horizontal configuration but 
with vertical walls, respectively. 

In this report a new version called TUMMAC-IV for arbitrary 3-dimensional 
(3D) hull configuration is developed. The degree of accuracy is raised by the use of 
a modified finite differencing of convective terms and by careful treatment of every 
boundary conditions. In particular, a new treatment of body boundary conditions 
for arbitrary 3D configurations is proposed in the framework of a rectangular cell 
system. Since for the flow field that contains both a free surface that is deformed 
and a body surface of complicated configurations that pierces it, the application of 
a body-fitted coordinate system gives rise to some serious difficulties; the TUM- 
MAC-IV method will be very useful for practical engineering purposes. 

In Sections II and III governing equations, finite difference representations and 
the computational procedure are described. In Section IV the solution of the 
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Poission equation is described, and the stability condition is examined in Section V. 
The explanations of various boundary conditions are present in Sections VI to X. 
Computed results are presented and discussed in Section XT for simple ships with 
vertical walls and in Section XII for hull forms of completely arbitrary con- 
figuration. Brief conclusions are mentioned in Section XIII. 

II. GOVERNING EQUATIONS 

The governing equations for incompressible fluid flow are the equation of con- 
tinuity and the Navier-Stokes (NS) equations as follow: 

au/ax + au/a y + awjaz = 0 
au/at + a(dyax + a(uu) /ay + a(uwyaz 

= -ay/ax + v(a2u/axz + aG/ay2 + aSdjaz*) 
au/at + a(uv)/ax + a(v2yay + a(uwyaz 

(1) 

= -a ul/ay + v(a*vjax2 + a+ja y* + a%/az2) 
awlat + a(uwyax + a(vw)/ay + a(d)/az 

= -a y/az + v(a2wllax* + azwja y* + a2wl/az2) + g. 

(2) 

Here the Cartesian coordinate system (x, y, z) is employed and velocity components 
are U, u, and w in respective direction. Y is pressure divided by the density, v the 
kinematic viscosity, and g the gravitational acceleration. The employment of the 
most fundamental equations is of first importance for the simulation of nonlinear 
phenomena. 

Of secondary importance is the treatment of boundary conditions on the free sur- 
face and body surface. On the free surface both dynamical and kinematic conditions 
must be satisfied. The former is that the pressure on the free surface accords with 
the atmospheric pressure, and the latter is that water particles move along the free 
surface and do not go across it, if viscous stress on the free surface is ignored. The 
body boundary condition is the same with the above kinematic condition which 
means that the velocity normal to the body boundary is zero on the boundary. 

It is generally supposed that the waves generated by the fore half-body are scar- 
cely influenced by the boundary layer covers the ship surface but that those 
generated by the after half-body interact with the viscous how in the vicinity of a 
ship. Therefore, it is desirable to apply the viscous body boundary condition for the 
complete simulation of ship waves. However, in this 3D problem the cell size can- 
not be so small as to resolve the viscous fluid motion. Thus, in computations in this 
paper, viscous effects on both free surface and body surface are not taken into con- 
sideration. The main aim of this paper is to simulate ship waves, which are scarcely 
influenced by viscous effects, under exact inviscid boundary conditions. In par- 
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titular, the free surface condition is nonlinear and it is imposed on the exact 
location of free surface that is not known beforehand but determined through the 
course of computation. 

III. FINITE DIFFERENCE REPRESENTATION 
AND COMPUTATIONAL PROCEDURE 

The origin of the Cartesian coordinate system (x, y, z) is at the forward end of a 
ship on the undisturbed free surface. The x axis is taken to be along the ship cen- 
terline being positive aftward, the y axis is laterally oriented, and the z axis ver- 
tically is positive upward. 

A staggered mesh system is used as shown in Fig. 1. Pressure is defined at the 
center of the cell volume and velocities on the center of the cell surfaces. The sub- 
scripts i,j, and k are used for the cell location. The center of the cell volume is at 
(i,j, k). 

By forward differencing in time and centered differencing in space, Eqs. (2) 
become: 

= -UC~ + l/2, j,k - ( y~i + I ,/,k - yi, j,k )/DX 

+ “[(ui+3/2,,,km2Ui+ 1/2,j,k + ui-,/2,,,k)/DX2 

+ t”i+ l/Z,,/+ 1.k - 2ui+ 1/2,J.k + Ui+ 1,2,~-,,k)/Dy~ 

+ (‘i+ 1/2,j,k+ 1 - 2ui+ 1/2,J.k + ui+ 1/2,j,k-~)/DZ21, 

(U;~:I/Z,~ - “i,j+ 1/2,k)/DT 

= -V~i,j+ 1/2,k- (yi,j+ I,k- ‘Yi,,k)/DY 

. . . 
+ > 

tw:Jtkl+ 1/2 - W,,,j.k + 1,2)lDT 

= - wCi, j,k + 112 - ( lyi,j,k + I - Iyi,J,k )/‘DZ 

+g+ . . . . 

(3) 

Here DT is time increment DX, DY, DZ are distances between velocity points in 
x, y, z directions, respectively, i.e., length, width and height of a cell, Superscripts 
are used for the time level i.e., variables with superscript (n + 1) are related to the 
(n + 1 )th time step and variables lacking a superscript are evaluated at the n th step. 
It is noted that since the time-differencing in Eqs. (3) is an approximation for the 
time level n + f, the remaining terms can be evaluated at either time level n or n + 1. 
Here, they are evaluated at the time level n. The convection terms are denoted U,, 
V,, and WC of which expression is described afterward. 
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FIG. 1. Definition sketch of staggered mesh system 

The expression for the velocity components at the (n + 1)th time step is derived 
from Eqs. (3) by combining the terms except the pressure gradient term and 
denoting them 5, y, and [ as: 

,,+ I 
‘r+ I/Z.,.k=~i+ 1;2,/,k- (y,+l.,,k- yl,j.k) DT/DX 

IIf1 
~~.~+112,k=YI~.~+l~2,k-(~~,~+l,k-~;.~.k)DT/DY 

n + I 
Wi,~,k+~/2=~i,~,k+1/2-(y~.,,k+~ - ~~,,,k)DT/DZ 

(4) 

where 
ti+ If2,J.k = ‘,+ 1/2,i,k - DT ’ UC,+ l/2.j,k 

+“‘DT C(‘i+3/2 ,kwzui+ 1/2.,,k+ Ui--1/2.,,k)/DX2 2 1 

+ (%+ l/2,/+ 1.k -2%+ 1/2./,k + ui+ ,,2.,p1,k)/Dy2 

+ (‘i+ l/Z,j,k+ I -2Ut+ 1/2,j,k + ui+ I/Z,j,k -l)/DZ’l 

Vi,j+ 1/2,k = I);,,+ 1/2,k - DT Vcl,,+ 1/2,k + V ’ DT [ ” ’ 1 

ii,j,k+ 1/2 = Wi,j,k+ I/~-DT’ WCi,j,k+ 112 + “’ DT [ ..’ ] +g. 

(5) 

For the finite difference representation of the convective terms denoted Uc, V,, 
and Wc the combination of the second-order upstream differencing (donor-cell 
method) and the centered differencing is employed following Hirt et al., [ 131. The 
x-directional convective term U, at i + 4 is expressed as 

uCi+ 1j2,j.k = (l/‘DX) II(U l,j,k- (u2)i,j,k] 

+ (l/DY)C(uu)i+ 1/2,j+ 1/2,k - (Uu)i+ l/2,jp1/2,k] (6) 

+ (l/DZ) C(UW)r+ 1/2,/,k+ 1/2 - (u”‘)i+ 1,2,j.k-l/2] 
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where the first term is, for example, 

(l/DX) II(u’);+ I,j,k - (~‘),,i,kl 

= i1/(4’DX)) C((Ui+l/2,~.k+Ui+3/2,,,k)~-(U;-,/2,j,k +Ut+,;2,,,k12) 

+“{(Ui+l/2,j,k+tli+3/2,j,kI ‘(“,+l/2,j,k-Ui+3/2,j.k) 

(7) 

- 1 Uipl/2.j,k + uz+ l/2,/,& 1 . t”iL 1,‘2,j,k - ur+ 1/2,j,k)) 1, 

Velocity points are shown in Fig. 2. When CI = 0, it is centered differencing, and 
when CI = 1, the donor-cell method. The value of c1 is so determined as to satisfy the 
stability condition described in a following section and to minimize the numerical 
dissipation to which the finite difference error of the donor-cell differencing mostly 
contributes. 

The divergence D at the (n + 1 )th time step is obtained from Eqs. (1) and (4). 

+ b;;k,+ ,,2 - W:Ifk’-,u)/DZ 

=(5 * I+ 1/2./.k - 4; ,/2,,.kPX+ (Vi,/+ l,‘2,k-q,,jm ,Q.~)IDY 

+ (ii, j,k + 1!2 - ii.j,k-,/.z)/DZ 
(8) 

+ (DT/‘DX2) (2yl,j.k - yi+ 1,l.k - y,-,,j,k) 

+ (DT/DY’) (2y/;,,,k - yz,,. ,,k - yi,,~,.k) 

+ (DT/DZ’) @‘y,.,,k - y’i,,,k + , - yi.,.k I ). 

D = 0 is required to rigorously conserve mass and it is aimed at the (n + 1 )th time 
step, i.e., D$+?’ in Eq. (8) is set at zero. Then, the equation for the pressure is 
derived as 

yi.j.k = (l/AA) C(Yi+ l,,.k + Yy,- l,,,k)/DX’+ (Yi.,+ I,k + yi,,--,,k)/DY* 

+ ( Iy, j,k + I + yi,j.k-l ,/‘DZ2 - Rr,,,kl (9) 

where 

AA = 2( 1/DX2 + l/DY’ + 1/DZ2) (10) 

Ri,j,k = (li+ l12,j.k -<~-I/~J.~)/(DT.DX) (11) 

+ (?i.j+ I/Z,k - ?ij-w,d/(“T DY) 

+ (ci,j,k + l/2 - ir,,,k-,,d/(DT ’ W. 

Ri,j,, is a source term of the Poisson equation (9) and is determined from the 
velocity field through (5). 
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FIG. 2. Velocity points for the second-order upstream differencing (u-component). 
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The momentum equations (4) and the Poisson equation (9) are the principal 
equations to be solved. Equations (4) are hyperbolic equations to be solved as an 
initial-value problem and Eq. (9) is an elliptic equation to be solved as a boundary- 
value problem. Equations (4) are solved by time-marching and at every time step 
Eq. (9) is solved by an iterative procedure. 

The solution is advanced in time by a series of repeated steps. First the Poisson 
equation (9) is iteratively solved under given initial and boundary conditions, and 
then new velocity components are derived from the momentum equations (4). A 
new source term Ri,j,, for the Poisson equation (9) is calculated by the new velocity 
field. Marker particles are used to tell the new location of free surface. And then the 
cycle is repeated. A block diagram is presented in Fig. 3. 

This solution algorithm is suitable to unsteady problems, although it is applied to 
a steady wave-making problem in this work by letting an unsteady solution 
approach a steady state. The computation is started from rest condition, and 
velocities at the inflow and bottom boundaries are gradually accelerated for several 
hundred time steps. After the steps of acceleration the computation is continued for 
adequate time steps until a steady state is reached with the velocities at the two 
boundaries kept unchanged. 

IV. SOLUTION OF THE POISSON EQUATION 

The Poisson equation (9) is iteratively solved by the following equation: 

(12) 

The superscripts m and (m + 1) denote iteration number and w is a relaxation fac- 
tor. The iteration is continued until the difference of pressure between the two 
iterative steps, i.e., the second term of Eq. (12) converges within an allowable error. 

The successive over-relaxation (SOR) method is employed, and Y~Jl[r,:k,!!, in 

.l?l 
z u 

-.l!!IL 

0 m+l 

Y X 

FIG. 4. Pressure points for SOR method. 
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Eq. (12) is calculated from Eq. (9) as below in Eq. 13, while the pressure points are 
shown in Fig. 4: 

+ ( YIy,.k + 1 + ‘~j$L~)/DZ*-Ri,,,kl. 

By substituting Eq. (13) into Eq. (12), we obtain the following equation to be 
solved by the SOR method: 

Yyi;’ = (1 - uV’$~ + (o/AA)[( Yy+ ,.i,k + Y;_:,;,k)/DX2 

The term in the parentheses in Eq. (12) is modified by eliminating Yyj.$Lar and 5, 
r, i in Ri,j,k making use of Eqs. (4), (lo), (1 1 ), and (13) as follows: 

y?.+ ’ 1. ,,kcal - Y~j,~=(l/AA)[{(Y~~,,,,,- Y~j,,k)lDX2-4j+,,2.j,kl(DT.DX)} 

- { ( yT/,k - yY-T,i,k)/DX2 - t,-,/*.,d(DT . DX) I 
+ w;+ 1,!f- y~j,~)/DY2-~i.,+~:~,kI(DT.DY)} 
- #T,i.r y~,t’,,,)/DY2-?i.,-~12,kI(DT.DY)) 

+ l( Y?j.k + 1 - y~j,)DZ2-r;,j.k+,,2/(DT.DZ)} , 

- { ( ‘7j.k - yyj,*k i I )/DZ2 - ii,i,k-,,ADT. DZ)} (15) 

= (l/CDT. AA)} ((uT;/d:,k - UT+ lpi.k)/DX 

+ (Vyjl t$& - “5 + 1/2./c )/DY 

+ (“$2 F/2 - wz.k + l/2 )/‘DZ ) 

= -( l,‘(DT . AA)} [O&l, 

5X1/60/3-4 
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In the above derivation the superscript (m + f) is used for the velocities calculated 
by pressure at two iterative steps m and (m + 1). The divergence D;,k is assumed as 
defined above. Then, Eq. (12) is rewritten as 

Y?+l= YW 
uk i,j,k - {w/CDT. AA)} [Dz,kI. (16) 

The solution method by Eq. (16) is the simultaneous iterative method which is a 
modification of and equivalent to the SOR method. In this method velocities are 
successively updated through Eqs. (4) so that D in Eq. (16) is calculated 
immediately after the neighboring pressure is computed at every iterative step, 
whereas the terms 4, ‘I, and [ are kept unchanged throughout the iteration. 
Therefore in this velocity-pressure iteration, pressure is evaluated at the time level 
n + 1 and the remaining terms of the momentum equations are evaluated at the 
level n. This procedure is convenient to deal with the boundary condition for an 
arbitrary body configuration. 

V. THE NUMERICAL STABILITY CONDITION 

In order to obtain stable solutions some conditions must be satisfied in the com- 
putation of the NS-equations and the Poisson equation. Neumann’s method [14] 
or Hirt’s method [ 151 of stability analysis is often applied. These methods are valid 
for linear equations, and therefore, the finite-difference equations are linearized by 
assumptions. Moreover, a pressure gradient term and a gravitational term are 
ignored. Thus, these analyses give only approximate conditions. 

The stability consideration based on the Neumann’s method gives the following 
conditions when the donor-cell method is employed for the differencing of the con- 
vective terms [lo]: 

(c, + cy + cz)2 6 (c, + c, + CJ + 2( d, + d, + d,) < 1. (17) 

Here c,, cy, c, are Courant numbers and d,., d,, d, diffusion numbers defined as: 
DT DT DT 

C”=U’DX c.“=v’m cz= 5z 

d,=v-g, d-,=v+$, d,=v-$. 

(18) 

(19) 

Equation (17) is decomposed into the following two conditions: 

c, + cy + cz d 1 (20) 

v Q ( 1 - (c, + cy + c,) >/{ 2. DT( 1/DX2 + 1/DY2 + 1/DZ2)}. (21) 

As the combination of the centered and the donor-cell methods is employed in 
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the TUMMAC-IV method through the finite difference representation such as 
Eq. (7) the stability condition is modified as 

(c, + c, + cJ2 <a(c, + C,” + c,) + 2(d, + d, + dZ) 6 1. 

Equation (22) is rewritten as 

(c,+c,+c;)bGL 

v d (1 - cr(c,+ c, + c,))/{2. DT(l/DX* + l/DY* + l/DZ*)}. 

(22) 

(23) 

(24) 

Equation (23) gives the condition to the combination factor ~1, while Eq. (24) gives 
only the lower limit of kinematic viscosity. 

To secure stability of the SOR method in the solution procedure of the Poisson 
equation the following condition of the relaxation factor is required 

0<0<2. (25) 

The above equations give only approximate necessary conditions, and the 
satisfaction of the above conditions does not always guarantee stable solutions. As 
much more complicated treatments that are beyond the governing equations are 
required especially on the body surface and the free surface, where unstable 
phenomena are liable to occur, careful effort must be devoted there to assure 
stability of the solution as described in the succeeding sections. 

VI. SIMPLIFICATION OF THE BODY CONFIGURATION AND FLAGGING 

The engineering purpose of the present TUMMAC-IV method is to compute the 
wave system and wave resistance generated by an advancing ship, taking account of 
the nonlinear features of the waves. Quantitative or qualitative accuracy of the 
estimation of wave resistance is very important for the hull-form optimization 
method, since the hull-form is very sensitive to wave resistance. For instance, the 
attachment of a properly designed bulbous bow can reduce wave resistance by 
50 percent. This is why the configuration of a hull-form is particularly complicated 
at the forward and after ends, sometimes having bulbs or appendages. These unique 
aspects of the configuration of a hull form imply that careful treatment is required 
in the computation. In particular, the x-directional curve of a hull on an x-y 
horizontal plane (called the waterline) must be more carefully treated than the ver- 
tical curve of a hull on a y-z plane (called the frame-line). 

The domain of computation is as illustrated in Fig. 5 for the case of a forebody of 
a ship. A half side of a ship body is included in the computational domain and a 
symmetry condition is imposed on the centerplane boundary. The uniform velocity 
U is parallel to the centerline and then the problem of a ship in straight course is 
treated. 

The narrow restriction on the body configuration is a serious shortcoming of the 
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free surface 

\ 
\ 

\ 
\ 

\ 
bottom boundary 

FIG. 5. Computational domain. 

MAC method which results from the adoption of a rectangular cell system. The 
alternative is the adoption of a body-fitted coordinate system. But in the problems 
that contain free surface it is difficult and not economical to make coordinate trans- 
formation at every time step, taking account of the deformed free surface con- 
figuration as well as the 3D arbitrary ship hull configuration. Viecelli [6] developed 
the ABMAC (aribtrary boundary MAC) method in order to extend flexibility of the 
body configuration in 2D case. In the present TUMMAC-IV method a new treat- 
ment of a 3D arbitrary body boundary is made, partly taking account of the con- 
cept of the ABMAC method. 

The hull configuration on the x-y plane, i.e., a waterline, is approximated by 
segments of straight line as seen in Fig. 6. The original waterline for the deter- 
mination of the segments is that on the horizontal plane that includes the centers of 
cells. Then, the vertical variation of the hull configuration within a cell height is 
neglected and the body surface in a cell is assumed to be a vertical plane wall, of 
which the length is that of the segment and the height is DZ. Therefore, the vertical 
configuration (frame-line) is approximated by a step-like shape. A 3D sketch is 
shown in Fig. 7. 

All the cells are flagged and classified into full-of-fluid cells (F-cells) body boun- 
dary cells (B-cells) and empty cells (E-cells) that do not contain fluid, i.e., a cell 
inside of the body boundary. A body boundary cell is a cell (1) that contains both 
fluid and body, (2) whose volume of fluid is more than a quarter of the volume of 
the cell and (3) which has at least one of six velocities not determined from the 
pressure gradient of Eq. (4). The cell whose volume of fluid is less than a quarter is 
defined as an empty cell, in which pressure is not computed. As the boundary cells 
must be continuously located along the succession of the segments, one of the outer 
neighboring cells of the above empty cell is newly defined as a body boundary cell, 
even when this cell does not contain body surface and violates the above con- 
dition (1). Some examples of cell division and the definition of B-cells are shown in 
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FIG. 6. Simplification of a hull form on horizontal (x-y) and vertical (y-z) planes 

Figs. 8-10 for the case of the hull form of a bulk carrier M55FO which has a long 
parallel middle body. The cell denoted K is a special cell, to which the same 
procedure with an F-cell is applied with one zero-velocity of w on the body surface. 

A body boundary cell is surrounded by four cells on a horizontal plane and two 
cells over and under it. The six surrounding cells are F-cells, B-cells, or E-cells. In 
both F- and B-cells the pressure is computed and the velocities facing these cells are 
computed through Eq. (4), but in an E-cell the pressure is not computed and the 
velocites facing an E-cell necessitate special treatment. Thus, the computational 
scheme of a body boundary condition varies depending on the sort of cells 
surrounding the concerned B-cell. Therefore all B-cells are classified into nine cases 
(ICASE = 0 to 8) depending on the flags of the four horizontally neighboring cells 
and into four cases (KCASE = 0 to 3) depending on the flags of the two vertically 
neighboring cells, as shown in Figs. 11 and 12. The case in which more than two of 
the horizontally neighboring cells are E-cells is not considered. If ICASE = 0 and 
KCASE = 0 simultaneously, the cell is not a B-cell. 



404 MIYATA, NISHIMURA, AND MASUKO 

24 
23 
22 
21 
20 
19 

it 
16 

1’: 

t9 
11 
10 
9 
8 
7 
6 

i 

3 
1 

k 

k-1 

FIG. 7. Simplilied body boundary configuration 
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ICASE=O 

0 A velocity facing B/F-cell 

0 A vdocity facing E-cell 

FIG. 1 I. Cases of a body boundary cell on a horizontal x-y plane. 

VII. BODY BOUNDARY CONDITION 

A free-slip body boundary condition is applied, because the cell size is not small 
enough to apply a no-slip body boundary condition. A free-slip condition is 
implemented in body boundary cells by satisfying the following three conditions: 
(1) the velocity normal to the body surface is zero; (2) the velocity tangential to the 
body surface does not have normal gradient; (3) the divergence of the cell is zero. 

In a typical 2D case in which two inner velocities are not known, such as the case 
of ICASE = 5, the velocities U, and V, in Fig. 13 are set equal to U, and V, respec- 
tively to satisfy the condition (3) in the full volume of the B-cell and to 
approximately satisfy the condition (2). Then, the pressure of this B-cell Yjj is 
varied by the following iterative equation (see [6]) 

Yyj+ ’ = !Py, - o(V, . n)/(2.6. DT). (26) 

Here, V, and n are a fluid velocity vector at the center of the segment and a unit 

0 Velocity Wing B/F-cdl 

n velocity facing E-cell 

FIG. 12. Cases of a body boundary cell on a vertical plane. 
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FIG. 13. Definition sketch for a body boundary cell. 

outward normal vector of a segment, respectively. The two components of V, are 
calculated from nearby velocities by linear interpolation. 6 is a mesh parameter. 
Equation (26) means that the pressure in a boundary cell is adjusted so that the 
fluid flow across the segment is extinguished. When condition (1) is fulfilled, the 
zero-divergence condition for the fluid portion of the B-cell is satisfied, because the 
divergence of the full volume to the B-cell is already zero and fluid does not flow 
across the body boundary. Equation (26) is in a form similar to Eq. (16), and the 
successive computation of pressure in F-cells is smoothly continued to B-cells. 

In the present 3D case the procedure is a little more complicated, but it basically 
follows the above procedure, which is, in a sense, a reasonable consequence of the 
simplification of the body configuration in the manner shown in Fig. 7. The body 
boundary is composed of vertical and horizontal panels, and one B-cell normally 
has one vertical boundary panel and two horizontal boundary panels. For the ver- 
tical panel the procedure above described in a 2D case is available, and for the two 
horizontal panels special consideration on the vertical velocity component w is 
made as described below. 

First, the vertical velocity w of a B-cell is extrapolated from the velocities outside 
of the B-cell, when the vertically neighboring cell is not an E-cell,or it is set equal to 
zero, when an E-cell is next to it (see Fig. 12). Second, the divergence of the B-cell is 
given by the following equation: 

Di,j.k = (U, - UI )/‘DX f ( v, - J’I )/DY 

+ ( W, . SF, - W, . SF,)/DZ. (27) 

Here, U, , U,, Vi, and V2 are as defined in Fig. 13, and W, and W, are vertical 
velocity component w on lower and upper surfaces of the B-cell, respectively. SF, 
and SF, are the dimensionless areas of “windows” on the lower and upper surfaces, 
respectively. The area of the “window” is that of a portion of the lower or upper 
surface that faces the fluid portion of the lower or upper B-cell, and it is made 
dimensionless by DX . DY. Only through the “windows” is the fluid permitted to 
move vertically. Thus, some additional conditions are imposed on the velocity com- 
ponent w to approximately implement the 3D body boundary condition. 

As W, and W, are determined beforehand in the manner described above, the 
zero-divergence condition of a B-cell is not fulfilled when U, and V, are set equal to 



NONLINEAR WAVES GENERATED BY SHIPS 409 

U1 and V2 as in the 2D case. Then the vertical divergence component 
( W, . SF, - W, . SF,) /DZ is calculated and it is allotted to the velocities Uz, V, in 
Fig. 13 as 

(28) 

where 

a/DX - h/DY + ( W, . SF, - W, . SF, )/DZ = 0. (29) 

The values a and b are determined by two conditions, namely that the divergence of 
the cell is zero through Eq. (27), and that the velocity vector induced by (a, 6) at 
the center of the segment is normal to the segment. Suppose that a and h in 
Eq. (28) are zero, then the inner velocities are set equal to the outer ones and no 
velocity gradient exists in the B-cell in Fig. 13. Therefore, the gradient of tangential 
velocity is scarcely produced, even if (a, b) does not induce tangential velocity at 
the center of the segment. Thus, the zero-divergence condition and the condition of 
zero-normal-gradient of tangential velocity are simultaneously satisfied. 

After the inner velocities are determined in this way, the horizontal velocity vec- 
tor V, at the center of the segment is derived by linear interpolation. Then zero- 
normal-velocity condition is fulfilled by renewing Yi,,,k through the slightly 
modified form of Eq. (26), in which the subscript i,j is replaced by i,j,k and the 
mesh parameter 6 is (l/DX + l/DY + l/DZ). 

The above procedure is repeated in the iterative process of the solution of the 
Poisson equation for the pressure. The new pressure !J$;’ gives new velocities U, 
and V, in Fig. 13 and the new pressure field in the vicinity gives new velocities W, 
and W,. The convergence of the repeated iterative cycle satisfies the 3D free-slip 
body boundary condition. Although some gross approximations are included in this 
procedure, it works well and the resultant pressure and velocity fields are legitimate. 

B-cells do not always have two unknown velocities U, and V,, but they have, 
some other features as shown in Fig. 14. In the case of ICASE = 5, which is quite 
normal, the above-described procedure is applied; and in the other cases such as 
those of ICASE = 1 or 2 the procedure is slightly different. When ICASE = 1 or 2, 
only one inner velocity U2 or V, respectively is not known. It is determined by the 
zero-divergence condition. In the case of ICASE = 1, for instance, 

U2=U,-(V2-VI)DX/DY 

-( W, SF, - W, SF,) DX/DZ. (30) 

In this case, the treatment of body boundary cell is less rigorous than the case of 
ICASE = 5, since the condition of zero-normal-gradient of tangential velocity is not 
considered. However, this inadequacy is considerably compensated by the inner 
extrapolation of velocities as described below. 



410 MIYATA, NISHIMURA, AND MASUKO 

ICASE. 

(i) 

g vIo t”” 1 (j-l) 
(i) (i+l) 

x 

FE. 14. Definition sketch for giving velocities inside of a body boundary 

Some other inner velocities, which are not yet determined in the above procedure 
to satisfy the body boundary condition, are necessary for the calculation of the con- 
vective term or the calculation of the vector of the movement of the marker par- 
ticles. So the velocities such as U,, Uq, U,, VO, V,, V4 in Fig. 14 are determined as 
follows: ICASE = 1, 

u,= u, 
v, = v, 
v4 = v,. 

(31) 

ICASE = 2, 

uq= u, 
v,= v,. (32) 

This setting of velocity by Eqs. (31) and (32) is expected to work in a way to reduce 
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the normal gradient of the tangential velocity when the segment is nearly vertical or 
horizontal, respectively to ICASE = 1 and 2. In the case ICASE = 5, 

U,= U, 

U,= Uz 

v, = v, (33) 
v, = v,. 

The velocity w of the inner E-cell is extrapolated from that of neighboring B-cells. 
It is noted that the above treatment of ICASE = 1 is common to the treatment of 
the foremost end cell where a stagnant flow is realized, even if the symmetry con- 
dition is applied as described in the following section. 

VIII. FREE SURFACE CONDITION 

The free surface condition is another most important condition, because the non- 
linearity of this condition is the source of the nonlinear wave-making, and the 
resistance due to the nonlinear waves plays a very important role in the resistance 
components. 

Let the exact location of the free surface be z = [, the exact inviscid free surface 
conditions on this location are 

Y= Y, (34) 

(35) 

Here, YO is the atmospheric pressure P, divided by the density of water. 
Equation (34) is a dynamic condition and Eq. (35) is a kinematic condition and 
both are exact as long as the viscous stress and the surface tension are not con- 
sidered. Both additional forces are safely assumed to be zero in high Froude-num- 
ber flow problems. 

For the fulfillment of the condition of Eq. (34) the “irregular star” of Chan and 
Street [S] is employed. In the solution procedure of the Poisson equation for the 
pressure near the free surface, such as the pressure Pi,j in Fig. 15, the atmospheric 
pressure P, on the free surface is used instead of the pressure of the neighboring 
cells, taking account of the various lengths between pressure points, i.e., legs of the 
irregular star q,, rj2, yap, and q4 in the 2D case of Fig. 15. Making use of Taylor’s 
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FIG. 15. Marker movement and “irregular star” in 2D case. 

expansion of the neighboring pressure with respect to P,,j the approximate Poisson 
equation in a 2D case [S] becomes 

(36) 

In the same way the 3D equation of the “irregular star” is 

This computation of pressure in cells near the free surface through Eq. (37) is con- 
tinued from the normal computation of the pressure in the cells below, in which the 
simultaneous iterative method is used. 

The kinematic condition expressed by Eq. (35) is fulfilled by the use of marker 
particles located on the free surface. The marker particles move in a Lagrangian 
manner and their new location gives the new free-surface configuration. Let (xi, yi, 
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zi) be the marker position and (uj, ui, wi) be the flow velocities at this position, the 
new location at the (n + 1)th time step is 

y~+‘=y:+DT.u; (38) 

The velocities (u;, ai, wi) are each obtained from the velocities at the nearest nine 
velocity points by the nine-points interpolation method described below. 

In the present 3D case only one marker particle is used for each free surface cell. 
When the initial location (xi, y,, zi) is at the center of a cell, the new wave height is 
obtained at irregular positions on the disturbed water surface, which makes the 
interpolation of wave height difficult. Therefore, the initial positions of marker par- 
ticles are iteratively calculated so that the new positions are located straight above 
the center of the cells as shown in a 2D case in Fig. 15. 

The velocities above the free surface are necessary in the calculation of the con- 
vective terms and in the interpolation procedure to determine the starting positions 
and the velocities of movement of marker particles. They are linearly extrapolated 
from three velocities in the fluid. In the interpolation in this extended velocity field, 
the nine-points interpolation formula below is used: 

U=U,+(a/2)(U,-U,)+(c/2)(U,-U,) 

+(1/4){2a2(U2+U,-2X+)) 

+ 2c2( u, + u, - 2. U,) 

+ac(U,- u,-u,+ U,,} 

U4 u3 

A4 A3 

Ir 
l u 

Al A2 

Ul u2 

L-POINTS INTERPOLATION 

(39) 

g-POINTS INTERPOLATION 

FIG. 16. Four- and nine-point interpolations 
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where 

a = h/DX, c = l/DZ. 

The definition sketch is shown in Fig. 16. The alternative interpolation formula is 
the four-points interpolation: 

U=(A,.U,+A,.U*+A,.U,+A,.U,)/(DX.DZ). (40) 

The definition is shown in Fig. 16, in which A,, etc. are areas of the divided portion 
of the cell. Equation (40) is a linear equation and Eq. (39) is a quadratic equation, 
and therefore higher accuracy is expected by the use of Eq. (39), although with 
presumable difficulty in stability. Equation (39) is used in the interpolation near the 
free surface. 

In the boundary cell that contains free surface, the computation of pressure is 
basically the same way as with normal body boundaries. However, the pressure of 
the cell above this cell ul, + , must be linearly extrapolated by use of ul, in a B-cell 
and !P,, on the free surface shown in Fig. 17 in order to determine velocity w on the 
upper surface of the concerned cell. Moreover, the relaxation factor for the iterative 
solution procedure is modified as below in order to promote convergence of the 
pressure, following Nichols and Hirt [ 161, 

0’=4w/{4-~(1 -DZ/dZ)}. (41) 

Here, AZ is the distance from the pressure point to the free surface as shown in 
Fig. 17. 

Some special treatments are employed to stabilize solution. One drops the 
second-order terms of Eq. (39), when used in body boundary cells; the other filters 

:: .‘.A 
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:: 

A 
x&+l: 

ii :: :: 
I g 
I ::::, 

free surface DZ/ f 
::. ::. 

Tc=- 7 

.:y: 
.i_ .I. :: 
1 ::. ::. ::. ::. 

body boundary 

/ 

FIG. 17. Definition sketch for determining the relaxation factor for a boundary cell containing free 
surface. 
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wave height by the following formula which is used by Longuet-Higgins and 
Cokelet [ 171: 

i:=(-i;~2-ir+2+4ii~r+4ii+,+105;)/16. (42) 

Equation (42) is used in the x direction and sometimes in the y direction as well. 

IX. CENTERPLANE CONDITION 

The computational domain is bounded by a centerplane of a ship as seen in 
Fig. 5, because the fluid motion of a ship is symmetrical. The half body of a ship on 
the starboard side is considered, and then the pressure computation is advanced 
from centerplane to the side plane. On the centerplane the condition of symmetry 
must be taken into account, and its combination with the SOR procedure must be 
properly dealt with. 

The centerplane bisects the cells in which pressure is first renewed as seen in 
Fig. 18. The boundary conditions are 

yi,l.k = yl,3,k 

vi3/2k= -l-),5/2k 3 . 2 1 

(434 

(43b) 

qi.312.k = -Y]!,S/2,k. (43c) 

For rigorous consideration of the centerplane boundary condition Eq. (43a) must 
be combined with the SOR procedure as below. Otherwise Yi,l,k is that of the mth 
iterative step, which violates the SOR procedure in a strict sense. 

A Vi;%? k .‘%,5/2 k 

A Vi,3/i ka%,3/2 k 

X L 

+i,3k 
X @ X 3 

h 

-.-__ 
+i;,2k +i,$ +i;2k CENTERPLANE -.-__ 

1'2 
(..... ..I w !!!yY!T. _ : ) .$rp .w.<:::; ;<<::::;.:.: 

Y 0 I 

i X i -1 I i+l 

FIG. 18. Pressure points on centerplane boundary. 
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The iterative equations (14) for two pressures Y$$i and Y$:l in Fig. 18 are 
written as 

+ (4AA)C(T+ 1,2,k + ‘%I,,,) /DX2 

+ ( !?2,k + 1 f YKL~I) /DZ2-Ri,2,k], (4) 

ys$l = (l - Ojy;,k 

+ (4AA)C(T+ 1,3,k + y?~:,:,k) /DX2 

+ ( ‘$,k + yy;;‘) /DY 2 

+ ( yyJ,k + I + Yy3T;; L I ) /DZ2 - R,,,kI. (45) 

YG1 in Eq. (44) is replaced by Yj,3,k m+ ’ from the boundary condition, and then 
Eq. (44) and (45) are simultaneous equations for two unknowns Yy2$l and Yy3,+k’, 
which are easily solved. In Ri,2,k of Eq. (44) ?ji,S/2,k is included and it is replaced by 
the known value from Eq. (43~). 

However, a numerical test fortunately shows that the use of Y$k instead of 
Yx? does not give rise to an unfavorable effect at all. Then the simpler method is 
used in the TUMMAC-IV procedure. 

X. OUTER BOUNDARY CONDITION 

At the inflow boundary u values of the double model computed beforehand are 
imposed. This is safely acceptable when the disturbances due to the ship are scar- 
cely noticed at the inflow boundary. 

In the iterative solution procedure of the Poisson equation by the SOR method, 
the pressure YO,,, in Fig. 19 must be properly given for the computation of Y,,j,k. 
The rigorous procedure of the SOR method necessitates the use of YO,j,k of the 
(m + 1)th iterative step, and it leads to a complicated procedure at the inflow boun- 
dary in a way similar to the centerplane condition [ 111. However, a numerical test 
shows that this rigorous treatment does not contribute to any improvement as far 
as the ship wave problems are concerned. On the contrary, the simplest method, in 
which Y,,,k is fixed to the value of the previous time step, provides successful 



NONLINEAR WAVES GENERATED BY SHIPS 417 

1 0 iii1 i = 1 1 2 1 :.: 

I-x k- u is imposed 

FIG. 19. Velocity and pressure points at inflow boundary 

results without serious problems. Therefore, this simplest method is employed in the 
TUMMAC-IV procedure. 

The bottom boundary is usually located so deep that the fluid motion is very 
gentle. Then, hydrostatic pressure is given and velocities are constantly extrapolated 
below the boundary (see Fig. 20). 

There are two open boundaries on which a radiation condition must be satisfied. 
This boundary condition is most difficult to fullill. In the TUMMAC-IV method 
the conditions of TUMMAC-I [9] are followed. At the sideward open boundary u, 
u, W, and P are set equal to the inner values so that their gradient in the direction 
normal to the boundary is set at zero. At the rear open boundary their gradient 
along the local flow direction is also set at zero. These simple conditions do not 
give unfavorable influences, partly because the combination of the centered and the 
donor-cell methods is employed for the convective terms of momentum equations. 
The transportive property of the donor-cell method, which means that disturbances 
do not propagate upstream, is presumably helpful for the fulfillment of the open 
boundary condition. 

k=2 

k=l 

. . . . . . . . . . . . . . . . . . . . . . . . . ...! A..!? . . . . . . . . . . ...! .I.: .,.,.;_., ;,.;,.,.,... .,.,.,_.,.,.,.,.,.,.,._,.,.,... . . . . . .,.,.,.,.,.,.,.,._ .,.,.,.,.,_ .,.... .,.... .,.,.,.,.;_ ;:::::~;,,;:,.~;;. _ .,.,.;;_ ,, ,. ,, ,,, 
FIG. 20. Velocity and pressure points on bottom boundary. 
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XI. COMPUTED RESULTS OF SHIPS WITH VERTICAL SIDE-WALLS 

In this section some computed results of ship models whose side-walls are vertical 
are presented. The simpler version TUMMAC-II is used here. The step-like 
approximation of the vertical configuration (frame-line) can be avoided for this hull 
form and the treatment of the body boundary condition is more reasonable without 
approximate consideration of the vertical velocity component. The combination fac- 
tor c1 of the convective terms is assumed to equal 1.0, i.e, the donor-cell differencing 
is employed so that stable solutions can be obtained without difficulties. 

Two simplified bulk carrier hulls M53A and M53C on ballast load condition and 
two parabolic waterlined hulls WM-IB and WM-lC, with and without a gigantic 
bulb of vertical cylinder type, are chosen for the computation. The principal par- 
ticulars of these ship models are listed in Table I. The length of the full-scale ship of 
M53A or C is 150 m and the deadweight tonnage is about 23,000 tons, while the 
computation is made for the ship models of 3 m length. This bulk carrier hull-form 
is that of a middle speed ship which sails at a speed somewhat faster than large oil 
tankers. M53A and C have the same volume (displacement), and only the 
longitudinal distribution of the volume is different between them. The longitudinal 
configuration (waterline) of WM-1C is a parabolic curve and WM-1B is produced 
by attaching to it a gigantic bulb whose radius of the circle at the fore-end is 
40 mm. The hull-forms of WM-1B and 1C are far from practical ships and they are 
chosen in order to know the difference of wave-making due to the difference of the 
fore-end configuration, i.e., blunt end and sharp end. 

The conditions of computation are tabulated in Table II. Only the fore part of 
the ship model is included in the computational domain. The length of the fore part 

TABLE I 

Principal Particulars of Ship Models 

Name of hull 
M53A 
M53C 

WM-IB 
WM-1C Wigley’s hull M55FO 

Type of hull 

Length (L) (m) 

Breadth (B) (m) 

Draft (d) (m) 

Computed 
Froude number 

Simplified 
bulk-carrier 

3,000 

0.509 

0.100 

0.180 

Parabolic 
waterline 
with and 

without 
blunt bow 

2.400 

0.240 

0.100 

0.240 

Horizontally 
and 
vertically 
parabolic 
configuration 

2.500 

0.250 

0.156 

0.261 
0.289 
0.316 

Practical 
bulk-carrier 

3.000 

0.497 

0.090 

0.180 
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TABLE II 

Condition of Computation 

419 

Name of hull 
M53A WM-1B Wigley’s 
M53C WM-1C hull M55FO 

Domain length (m) 
of breadth (m) 

computation depth (m) 

Cell size DX (mm) 
DY (mm) 
DZ (mm) 

Approximate number 
of used cell 

Time DT (~1 
increment 

Tme steps for 
acceleration 

Total time steps 

Combination factor u 

Relaxation factor w 

Kinematic viscosity Y (m2/s) 

Froude number F, 

Speed of advance (m/s) 

1.650 1.400 5.750 4.500 
0.600 0.400 0.600 0.900 
0.400 0.340 0.313 0.270 

50 25 25 40 
20 16 15 36 
25 20 31.3 18 

17000 27000 76000 42000 

0.00252 0.00252 0.00420 0.00461 
0.00388 
0.00355 

360 360 400 300 

480 600 1200 600 

1.0 1.0 0.5 0.5 

1.5 1.5 1.5 1.5 

0 0 0 1.139x lo-” 

0.180 0.240 0.267 0.180 
0.289 
0.316 

0.991 1.164 1.323 0.976 
1.429 
1.565 

computed is 1.2 m for M53A and C and 1.0 m for WM-1B and 1C. The uniform 
flow is gradually accelerated for 360 time steps with very low acceleration at the 
beginnin and at the end of acceleration stage. The Froude number Fn is defined as 
U/ Y g. L, where U is the speed of advance and L is the ship length. The Froude 
number 0.18 is chosen for M53A and C, because it corresponds to their service 
speed, and 0.24 is chosen for WM-1B and 1C. 

Computed time evolution of wave contour maps of M53A and C are shown in 
Figs. 21 and 22. Because the apex angle of M53A is larger than M53C the waves 
around the fore-end of M53A are higher. But, on the contrary, M53C generates 
waves of greater magnitude at the hollow surface at x/d = 3 to 4. As a total, the 
waves generated by M53A are less conspicuous, and as a result the wave resistance 
that M53A receives is smaller than M53C. Since the superiority of M53A cannot be 
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Time evolution of wave height contours of WM-lB, steady advance speed 
Fn = 0.24 (1.164 m/s) is reached at the 360th time step. The interval of contours is 0.05 H. 
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FIG. 25. Photographs of waves of forebodies of WM-IB (above) and WM-1C (below) advancing at 
Fn = 0.24 ( 1.164 m/s). 
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explained by linear wave-making theories or by experimental measurement of the 
linear wave system that spreads far away, the numerical simulation of waves in the 
near-field is very useful for the correct qualitative estimation of wave resistance. 

The computed time-evolutional contour maps of waves generated by WM-1B 
and 1C are shown in Figs. 23 and 24. The gigantic bulb of vertical cylinder type 
produces a very intense foremost wave which has a circular plan form, accom- 
panied by a very deep trough and crest. In the case of WM-lC, which has a pure 
parabolic waterline, only the foremost wave is conspicuous. The modesty of the 
waves of WM-1C in comparison to WM-1B is evident. The photographs of the 
waves of these two simple models are shown in Fig. 25. The waves of WM-1B are 
so intense and steep as to cause violent wave breaking at the wave front. Although 
the numerical results do not explain all of the complicated features of nonlinear 
waves around a bow, they succeed in simulating the intensity and steepness of the 
waves of the hull with a gigantic bulb. 

XII. COMPUTED RESULTS OF SHIPS OF 
COMPLETE THREE-DIMENSIONAL CONFIGURATION 

Two ship models with complete 3D configuration are chosen here, i.e., a ship 
model with simple mathematical curves called Wigley’s model and a bulk carrier 
model M55FO with a typical practical hull form. Principal particulars are shown in 
Table I. The combination of the donor-cell and centered differencing is used for the 
convection terms with the combination factor 0.5. The kinematic viscosity is neglec- 
ted in the computation with Wigley’s hull and that of actual fresh water is used in 
the computation with M55FO. This difference gives only negligible difference in fluid 
flow, because a free-slip body boundary condition is employed and the diffusion 
term influences waves only very slightly. 

The hull surface of the Wigley’s model is made of parabolic curves as defined by 

y=(B/2) (1 -(2x/L)*} (l -(z/d)2}. (46) 

Here, L, B, and d are ship model length, breadth, and draft (depth below the 
undisturbed free surface), respectively. The hull form of M55FO has a bulbous bow 
and a semi-transom stern with a small stern bulb. It is one of the typically well- 
designed hull forms for a single-propellered bulk carrier of 26,000 deadweight ton- 
nage. The load conditon is ballast condition (lightly loaded condition) with small 
draft. On this condition the difference of hull form is sensitively revealed by wave- 
making. 

Computations were conducted mostly for the full length of the two ship models, 
and the conditions of the computations are tabulated in Table II. Three steady 
advance speeds of Fn = 0.267, 0.289, and 0.316 are chosen for the Wigley’s hull and 
Fn = 0.180 is chosen for M55FO which corresponds to the service speed of 
13.5 knots. 
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FIG. 26. Time evolution of wave height contours of the Wigley’s hull from 500th to 1200th time step 
at the interval of 100 time steps. Steady states of Fn = 0.267, 0.289, and 0.316, are reached at the 6OOth, 
900th and 1200th time steps. Both positive and negative values are contoured in solid curves. The con- 
tour interval is 0.02 H ( = U2/2g). 
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FIG. 27. Perspective views of waves of the Wigley’s hull at Fn = 0.267, 0.289, and 0.316 from above. 

The computation of the fluid motion around the Wigley’s hull at three speeds of 
advance was carried out continuously for 1200 time steps. The computation is start- 
ed from the condition of rest and the uniform stream is accelerated for 400 time 
steps until it reaches to 1.323 m/s which corresponds to Fn = 0.267. The uniform 
stream is kept constant for 200 time steps and a steady solution of Fn = 0.267 is 
obtained at the 600th time step. Then, the uniform stream is accelerated again for 
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FIG. 28. Comparison of computed (above) and measured (below) wave height contour maps of the 
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Wigley’s hull at Fn = 0.289 

100 time steps and the steady state of Fn = 0.289 is reached at the 900th time step. 
It is once more accelerated and the solution at Fn = 0.316 is finally obtained at the 
1200th time step. The dimensionless time increment DT * U/d is kept constant 
throughout. The number of iterations per time step is from 18 to 30 with a mean of 
about 24. This typical number of iterations is approximately the same for other 
computational cases in this paper. As the number of cells in which pressure is com- 
puted is approximately 76,000, the CPU time required by the super-computer 
HITAC S-810/20 was nearly 3 hr. 
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FIG. 29. Pressure distribution on the hull surface of the forebody of the Wigley’s hull at Fn = 0.267, 
0.289, and 0.316 from above. Positive values are contoured by solid isopleths and negative values by 
dashed contours. The interval ACp is 0.02. 
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FIG. 30. Velocity vector fields on vertical y-z planes of the Wigley’s hull advancing at Fn = 0.316. 
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The computed time evolution of the wave height contour map is shown in Fig. 26 
and the perspective views of waves at three steady speeds of advance are shown in 
Fig. 27. The contour is drawn at the interval of 0.02 H, where H is the head of 
uniform stream U2/2g, and the contours are dimensionless. As the hull form is very 
tine, conspicuous waves occur from near the bow and the stern. The angle of wave 
crest of the foremost wave to the centerline decreases with the increase of advance 
speed, and simultaneously the maximum value of the contour decreases to 0.30 H, 
0.28 H, and 0.24 H at Fn = 0.267, 0.289, and 0.316, respectively. This tendency is 
one of the typical characteristics of nonlinear bow waves. 

Computation of waves in the local area was also carried out and the results are 
compared with experimental values in Fig. 28. The cell dimensions DX, DY, DZ are 
25, 10, and 31.3 mm, respectively, which is a little better than the case of Fig. 26. 
The agreement is satisfactory, but the discrepancy is clear on the back side of the 
foremost wave where turbulence of free surface is likely to be produced. 

The computed contour maps of pressure coefficient of the forebody of a Wigley’s 
hull are shown in Fig. 29, and some examples of velocity field are shown in Fig. 30. 
By the finite difference computation with 76,000 cells, 304,000 values of velocity 
components and pressure are simultaneously. derived, which is absolutely 
impossible in experimental research. Among these data the pressure distribution on 
the body surface and the velocity field in the near-field are of particular importance, 
because the integration of the former is directly equal to the resistance and the 
velocities of the latter give details of the wave motion. Figure 29 indicates that the 
high pressure region is generated at the fore-end and near the wave crest. Resistance 
reduction will be attained by reducing the high pressure region near the bow by 
attaching a bulbous bow or some modification of the hull form. 

The computed time evolution of the wave contour map of M55FO is shown in 

Fig. 31. The horizontal cell division is as shown in Fig. 10, and it is very coarse con- 
sidering that the protrusion of the bulbous bow is about 80 mm, while DX is 
40 mm. In spite of this, the body boundary and the free surface conditions work 
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FIG. 32. Pressure distribution on the body surface of M55FO for the ballast condition at Fn =0.18, 
600th time step. The contour interval ACp is 0.05. 
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very satisfactorily on this very complicated hull form, and the generation of the 
waves is well simulated. 

The computed pressure distribution is shown in Fig. 32 in the form of contour 
map. The high pressure regions are located at the foreward and after ends, and at 
the free surface near both ends. The resistance is obtained by integrating the 
longitudinal component of pressure, but it is very difficult to obtain accurate values. 
The ship hull is pushed backward at the bow and pushed forward at the stern, and 
the resistance is the difference of the two forces. Besides, the afterbody is affected by 
viscous fluid motion which is very difftcult to resolve theoretically taking into 
account its interaction with wave motion. 
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FIG. 33. Comparison of computed (above) and measured (below) wave height contour map of the 
forebody of M55FO for the ballast condition at Fn = 0.18. The contour interval is 0.05H. 
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A liner cell division is employed for a part of the forebody of M55FO. The cell 
dimensions DX, DY, and DZ are 20, 20, and 18 mm, respectively. The computed 
wave height contour map is compared with an experimental one in Fig. 33. The dis- 
crepancy is in the fact the trough behind the foremost wave is vague in the com- 
putation. However, it is supposed that the present method can be succesfully 
applied to the design of actual hull forms. 

XIII. CONCLUDING REMARKS 

A finite difference simulation method for ship waves was developed by synthesiz- 
ing many previous works of finite difference techniques of researchers in various 
scientific fields and by improving the techniques to suit the concerned 3D problem 
with free surface. Special efforts were devoted to the implementation of all the 
boundary conditions. In particular, the body surface and free surface conditions 
were difficult to fulfill with any degree of stability. 

Although the computed results do not show complete agreement with experimen- 
tal ones, the degree of agreement is guaranteed to be improved by using liner cells. 
Today the hull form of a ship is designed mostly by relying on the experimental 
results, partly because linear wave-making theories are not reliable enough. 
Experiments of deriving wave resistance are laborious and costly. A towing basin of 
more than 100 m length and very precise ship models must be prepared. When the 
qualitative accuracy of the TUMMAC-IV method is guaranteed, in other words, 
when the superiority of one hull form among many can be correctly explained, the 
numerical method can partly take the place of the towing basin. Moreover, the 
computational cost, which is expensive for the computations in this paper, will be 
rapidly decreased with the development of the computer. In the future the so-called 
numerical towing basin will play a significant role in the procedure of designing hull 
forms. 

All the computations were carried out by HITAC M-200H/280H and YITAC S- 
810/20 (supercomputer) of the Computer Center, the University of Tokyo. 
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